Appendix 6: Geometric Formulas

REGULAR POLYGON OF n SIDES INSCRIBED IN CIRCLE OF RADIUS T

AREA = $\frac{1}{2}$ nr² sin $\frac{360^{\circ}}{100}$

PERIMETER = 2nr sin 360°

SEGMENT OF CIRCLE OF RADIUS T

AREA OF SHADED PART = $\frac{1}{2}r^2(\theta - \sin \theta)$ (& in RADIANS !)

ELLIPSE OF HALF-AXES a AND b

 $AREA = \pi a \cdot b$

PERIMETER $\approx 2\pi \sqrt{\frac{1}{2}(a^2+b^2)}$

RECTANGULAR PARALLEL EPIPED

OF LENGTH & HEIGHT b, WIDTH C.

VOLUME = a.b.c

SURFACE AREA = $2 \cdot (ab + ac + bc)$

LENGTH OF DIAGONAL = $\sqrt{a^2 + b^2 + c^2}$

SPHERE OF RADIUS T

VOLUME = 4TT r3

SURFACE AREA = $4\pi r^2$

RIGHT CIRCULAR CYLINDER OF RADIUS F AND HEIGHT h

VOLUME = TTr2.h

LATERAL SURFACE AREA = 271 r.h

GENERAL CYLINDER OF BASE AREA A AND HEIGHT h

VOLUME _ A.h

